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Decoherence
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Bjorken’s formula
dS
dy final

=
d 3rd 3p
(2π )3dy

− fi ln fi ± (1± fi )ln(1± fi )[ ]∫
i
∑

= 5600 ± 500     [for 6% central Au+Au @ 200]

Phase space analysis (Pal & Pratt):

dS
dy final

= (S / N )i
dNi

dyi
∑ = 5100 ± 200     [for same cond.]

Chemical analysis (BM & Rajagopal):

Final entropy
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The 10% increase during hadronic expansion is compatible with moderate viscosity
of the hot hadronic gas phase. Quantitative study with hadronic Boltzmann cascade
would be desirable.
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Viscous hydrodynamics
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Hydro regime R. Fries, BM,  A. Schäfer,
PRC 78, 034913 (2008)

Conclusion: 10-20% increase of S likely in hydrodynamic flow regime.



Sdeco ≈
1
2
ln2πn +1( )

 

dSdeco

dy
≈

1
2
Qs

2R2α s ln 2π
α s

+1






: 1,500 (for α s ≈ 3).

 

Tr ρ̂2 (t)
Tr ρ̂(t)( )2

: exp −t / τ deco( )

τ deco = cQs
−1 with c ≈ 1

Decoherence
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Complete decoherence of coherent state generates:

Application to CGC initial state, counting causally disconnected transverse domains:

Decoherence time can be calculated from:

BM & A. Schäfer, PRC 73 (2006) 054905; R. Fries, BM, A. Schäfer, arXiv:0807.1093 (PRC in print).



The need
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Needed: A systematic approach to computing the 
transition from decohering initial color fields to 
quasi-equilibrium describable by hydrodynamics.

Conclusion:  About 50% of final entropy may be attributed to 
(transverse) decoherence (~30%), hydrodynamic expansion 
(~10%), and hadronic freezeout (~10%). 

The remainder must be due to pre-equilibrium dynamics of 
the “glasma”.



The problem
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SvN = −Tr ρ lnρ[ ]The von Neumann entropy

is conserved for any closed quantum system described by a Hamiltonian.

SX = −TrX ρX lnρX[ ] ρX = TrY ρ[ ]with

Approach 1: For system X interacting with its environment Y, the reduced entropy

increases as a result of growing entanglement between X and Y.   
Possible approach: Consider, a rapidity interval Δy as “system” and the remainder 
as “environment”, which cannot effectively communicate due to causality. 

Problem: Entanglement entropy usually proportional to surface area, not volume.

Approach 2: Consider the effective growth of the entropy due to the increasing 
intrinsic complexity of the quantum state after “coarse graining”.

Problem: How to coarse grain without assuming the answer ?



Ĥ(t) =
p2

2
+

m(t)2

2
x2

m(t)2 =ω 2θ(−t) − λ2θ(t)

The “pencil on its tip”
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The decay of an unstable vacuum state is a common problem, e.g., in cosmology 
and in condensed matter physics. Paradigm case:  inverted oscillator.

t = 0 t = 1 t = 2

t < 0 |Ψ(x)|²

|Ψ(x)|² |Ψ(x)|² |Ψ(x)|²

V(x)

V(x)V(x)V(x)

with

W (q, p; t) =
∫

du e−ipu〈q +
1
2
u| ρ̂(t) |q − 1

2
u〉Wigner function:



Wigner function
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Husimi transform

 Problem: Wigner function cannot be interpreted as a probability 
distribution, because W(p,x) is not positive (semi-)definite. 

 Idea (Husimi - 1940): Smear the Wigner function with a Gaussian 
minimum-uncertainty wave packet:

 H(p,x) can be shown to be the expectation value of the density matrix 
in a coherent oscillator state |x+ip〉and thus H(p,x) ≥ 0 holds always.

 H(p,x) can be considered as a probability density, enabling the 
definition of a minimally coarse grained entropy (Wehrl - 1978):
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H∆(p, x; t) ≡
∫

dp′ dx′

π! exp
(
− 1

!∆
(p− p′)2 − ∆

! (x− x′)2
)

W (p′, x′; t)

SH,∆(t) = −
∫

dp dx

2π! H∆(p, x; t) lnH∆(p, x; t)



Wigner vs. Husimi 
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t = 0

t = 0 t = 2

t = 2

Wigner
function

Husimi
function



dSH
dt

=
λσρ sinh2λt

σρ cosh 2λt +1+ ′δ δ
t→∞ → λ with ρ,σ ,δ , ′δ  constants dep. on ω ,λ

dSH
dt

t→∞ → λk
k
∑ θ λk( )

SH entropy growth
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Many modes:

This is the Kolmogorov-Sinai (KS) entropy hKS  
known from classical dynamical system theory.

KS-entropy describes the growth rate of the  
entropy for a coarse grained phase space density 
in the approach toward ergodic equilibrium.
[see e.g.: Latora & Baranger, PRL 82 (1999) 520.]

but independent of Δ and ħ  !!!
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From Quantum Mechanics
to Quantum Field Theory:

The Wigner Functional



Wigner functional
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W [Φ(x),Π(x); t] =
∫

Dϕ(x) exp
[
−i

∫
dx Π(x)ϕ(x)

]
〈Φ(x) +

1
2
ϕ(x)| ρ̂(t) |Φ(x) − 1

2
ϕ(x)〉

W [Φ(p),Π(p); t] =
∫

Dϕ(p) exp
[
−i

∫ ∞

0
dp

(
Π∗(p)ϕ(p) + Π(p)ϕ∗(p)

)]
〈Φ(p) +

1
2
ϕ(p)| ρ̂(t) |Φ(p) − 1

2
ϕ(p)〉

Wigner functional = Adaptation to QFT.  Start with a scalar quantum field Φ.

Momentum space representation:

Adapt the phase space formulation to the field representation of quantum field 
theory in order make the classical field limit more transparent.

Position space representation:

[S. Mrówczyński & BM, Phys. Rev. D 50 (1994) 7452]



W [Π,Φ; t] = C e
−

R dp
2π

„
|Πp|2

Ep
+Ep|Φp|2

«

with Ep =
√

p2 + m2

W [Π,Φ; t] = C e
−

R dp
2π

„
|Π0

p|2

Ep
+Ep|Φ0

p|2
«

Φ0
p = Φp(t) cosh λpt−

Πp(t)
λp

sinhλpt

Π0
p = Πp(t) cosh λpt− λp Φp(t) sinhλpt

Φ0
p = Φp(t) cos ωpt−

Πp(t)
ωp

sinωpt

Π0
p = Πp(t) cos ωpt + ωp Φp(t) sinωpt

λp =
√

µ2 − p2 ωp =
√

p2 − µ2

Unstable vacuum in QFT
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Ĥ(t) =
∫ ∞

0

dp

2π

(
Π̂†(p)Π̂(p) + (m2(t) + p2) Φ̂†(p)Φ̂(p)

)
m2(t) = m2 θ(−t)− µ2 θ(t)with

Split problem into stable ( p² > μ² ) and unstable ( p² < μ² ) modes.

Initial Wigner
functional:

W is constant along a classical trajectory:

|p| < μ |p| > μ



H∆[Π,Φ; t] =
∏

|p|<µ

2√
Ap(t)

exp
[
−R(Πp,Φp; t)

Ap(t)

]
×

∏

|p|>µ

2√
Ãp(t)

exp

[
− R̃(Πp,Φp; t)

Ãp(t)

]

SH,∆(t) =
∫

DΠ DΦ
2π

H∆ lnH∆ = V

∫

|p|<µ

dp

2π

[
1
2

ln
Ap(t)

4
+ 1

]
+ V

∫

|p|>µ

dp

2π

[
1
2

ln
Ãp(t)

4
+ 1

]

dSH,∆

dt
= V

∫

|p|<µ

dp

2π

σp(∆2 + λ2
p) sinh 2λpt

Ap(t)∆
+ V

∫

|p|>µ

dp

2π

δ̃p(ω2
p −∆2) sin 2ωpt

Ãp(t)∆

t→∞−→ V

∫ µ

−µ

dp

2π
λp =

V µ2

8
.

Entropy growth
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Husimi-Wehrl entropy:

Growth rate:

[ Extensive (!) and independent of ħ ]

Husimi functional:



Instability begets entropy

17

Only SH of unstable modes grows !

unstab
le mode 

stable mode 
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Parametric resonance
instability



L(χ̂) =
1
2

(
gµν ∂χ̂

∂xµ

∂χ̂

∂xν
− g2Φ(t)2χ̂2

)

(Xk, Pk) = (rk cos αk,ωrk sinαk)

W (α, n, τ) ≈ 2e−α2/π̃2−n2π̃2

H∆(α, n, τ) ≈ 2
√

π̃2∆
1 + π̃2∆

exp
(
−α2∆ + n2π̃2

1 + π̃2∆

)

π̃(τ) = π e−2µτ

SH,∆(τ) τ→∞−→ 2µτ + const.

Big Bang entropy
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 Other application:  Reheating after cosmic inflation.

Φ(t) =  Φ0 cos(ωt)  inflaton field

Canonical transformation:

with

Consider 
single mode k.

At the end of inflationary period, the scalar inflaton field falls out of its false vacuum
state and begins to oscillate around the true minimum of its potential. Other fields
coupling to the inflaton field now experience a periodically oscillating potential (or
mass in quantum field theory). Model case: scalar field with bi-quadratic coupling.



Wigner vs. Husimi 
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t = 1

t = 1 t = 3

t = 3

Wigner
function

Husimi
function
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Yang-Mills Theory



e.g.: D A(1),A(2)  = d 3x ε (1) (x)2 − ε (2) (x)2∫

Yang-Mills Fields
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(Gauge invariant) distance measure needed:

Yang-Mills Instabilities first observed in IR limit by S.G. Matinyan & G.K Savvidy (1981)

Interferences
at early times

B. Müller & A. Trayanov, PRL 68 (92) 3387

SU(2) for 
various E/L3

Energy density 
grows



Lyapunov spectrum
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C. Gong, PRD 49 (94) 2642

Lyapunov spectrum
of SU(2) for 23 lattice

gauge
d.o.f.

Systematic studies in T.S. Biro, C. Gong, B. Müller & A. Trayanov, IJMP C5 (94) 113

Rescaling method permits determination of complete spectrum of eigenvalues and 
eigenvectors the unstable modes.

Local instability exponents are larger
than asymptotic Lyapunov exponents



hKS =
∑

λk>0

λk ≈ 0.079 (18L3) λmax

λmax ≈
0.15g2E
3L3

⇓

hKS ≈ 0.07g
2E

Yang-Mills fields
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for SU(2) Hamiltonian LGT.

(extensive !)

More systematic study of field configurations relevant to RHIC needed !

[J. Bolte, B.M., A. Schäfer, Phys. Rev D 61 (2000) 054506]

 
dS
dydτ

≈ 0.07 4πα s

h
4
π
dET

dy
≈ 1.1α s

600GeV
h

≈ 1,000 / (fm/c) in central Au+Au 
(@ 200 GeV).



H =
g2

a

(
∑

l

1
2
Ea

l Ea
l +

4
g4

Re
∑

p

(1− trUp)

)

ag2H → H, t/a→ t, g2E → E, g2!→ !

Φ[Ul] =
∏

l

φl(Ul) =
∏

l

1√
Nl

exp
(

bl

2
tr(UlU

−1
l0 )− 1

! tr(El0UlU
−1
l0 )

)

Beyond classical YM
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Idea: Use generalized Gaussian wave packets in the link representation of lattice 
gauge fields [Gong, BM, Biró, Nucl. Phys. A568 (1994) 727].

Lattice (KS) Hamiltonian:

can be scaled to dimensionless variables:

Wave packet ansatz:

δ

∫ t2

t1
〈Φ|(i! ∂t − H)|Φ〉 = 0

Semiclassical evolution equation obtained from variational principle:

with respect to parameters: bl (t), Ul0 (t), El0 (t).



Conclusions
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Husimi functional provides a practical method to calculate the rate of (coarse grained) 
entropy growth in quantum field theory.  Various applications: 

• Decay of unstable vacuum states
• Decay of coherently oscillating excited states (e.g. reheating after inflation)
• Equilibration of QCD matter 

Wigner functional method permits smooth interpolation between field eigenstates and 
particle excitations. This allows for the approximate treatment of quantum coherence 
and uncertainty relation effects.

Classical Yang-Mills theory on the lattice exhibits many local instabilities, implying an 
extensive KS entropy, which grows linearly with total energy.

Next goal: Study of the entropy growth rate of field configurations relevant to RHIC in 
semiclassical lattice gauge theory. Initial state Wigner functional in the CGC model has 
been constructed by Fukushima, Gelis & McLerran [Nucl. Phys. A786 (2007) 107].

TK, BM, AO, AS, Toru Takahashi & Arata Yamamoto, in progress - stay tuned.
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The End !



dEa
l

dt
=

i

f(vl)

∑

p(l)

(fpτ
aUp)−

3!
8

wl

vl
Ea

l ,

dUl

dt
=

i

2

(
1

f(vl)
− 1

2vl

)
ElUl,

dvl

dt
=

3!
8

f(vl)
f ′(vl)

wl

vl
,

dwl

dt
=

(
1

f(vl)
− 1

2vl

)
E2

l +
E2

l

4vl
+

2
f(vl)

∑

p(l)

fpUp −
3
16

!2

(
vl +

w2
l

vl

)
,

− f(vl)
f ′(vl)

(
E2

l

4v2
l

+
3
16

!2

(
1− w2

l

v2
l

))
,

! ↔ g2! = 4παs.

Eqs. of motion
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Scaling implies: 

Heff =
∑

l

[
1
2
(1− f(vl)

2vl
)E2

l0 + !2 3f(vl)
16vl

|bl|2
]

+ 4
∑

p

(1− fp Up0)

f(v) = I2(2v)/I1(2v) and fp =
∏

l∈p

f(vl)where


